On the Difficulty of Intersection Checking with Polynomial Zonotopes

17 May 2023  ·  Yushen Huang, Ertai Luo, Stanley Bak, Yifan Sun ·

Polynomial zonotopes, a non-convex set representation, have a wide range of applications from real-time motion planning and control in robotics, to reachability analysis of nonlinear systems and safety shielding in reinforcement learning. Despite this widespread use, a frequently overlooked difficulty associated with polynomial zonotopes is intersection checking. Determining whether the reachable set, represented as a polynomial zonotope, intersects an unsafe set is not straightforward. In fact, we show that this fundamental operation is NP-hard, even for a simple class of polynomial zonotopes. The standard method for intersection checking with polynomial zonotopes is a two-part algorithm that overapproximates a polynomial zonotope with a regular zonotope and then, if the overapproximation error is deemed too large, splits the set and recursively tries again. Beyond the possible need for a large number of splits, we identify two sources of concern related to this algorithm: (1) overapproximating a polynomial zonotope with a zonotope has unbounded error, and (2) after splitting a polynomial zonotope, the overapproximation error can actually increase. Taken together, this implies there may be a possibility that the algorithm does not always terminate.We perform a rigorous analysis of the method and detail necessary conditions for the union of overapproximations to provably converge to the original polynomial zonotope.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here