On the Convergence of Decentralized Federated Learning Under Imperfect Information Sharing

19 Mar 2023  ·  Vishnu Pandi Chellapandi, Antesh Upadhyay, Abolfazl Hashemi, Stanislaw H /. Zak ·

Decentralized learning and optimization is a central problem in control that encompasses several existing and emerging applications, such as federated learning. While there exists a vast literature on this topic and most methods centered around the celebrated average-consensus paradigm, less attention has been devoted to scenarios where the communication between the agents may be imperfect. To this end, this paper presents three different algorithms of Decentralized Federated Learning (DFL) in the presence of imperfect information sharing modeled as noisy communication channels. The first algorithm, Federated Noisy Decentralized Learning (FedNDL1), comes from the literature, where the noise is added to their parameters to simulate the scenario of the presence of noisy communication channels. This algorithm shares parameters to form a consensus with the clients based on a communication graph topology through a noisy communication channel. The proposed second algorithm (FedNDL2) is similar to the first algorithm but with added noise to the parameters, and it performs the gossip averaging before the gradient optimization. The proposed third algorithm (FedNDL3), on the other hand, shares the gradients through noisy communication channels instead of the parameters. Theoretical and experimental results demonstrate that under imperfect information sharing, the third scheme that mixes gradients is more robust in the presence of a noisy channel compared with the algorithms from the literature that mix the parameters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here