On the Complexity Analysis of Randomized Block-Coordinate Descent Methods

21 May 2013  ·  Zhaosong Lu, Lin Xiao ·

In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in [8,11] for minimizing the sum of a smooth convex function and a block-separable convex function. In particular, we extend Nesterov's technique developed in [8] for analyzing the RBCD method for minimizing a smooth convex function over a block-separable closed convex set to the aforementioned more general problem and obtain a sharper expected-value type of convergence rate than the one implied in [11]. Also, we obtain a better high-probability type of iteration complexity, which improves upon the one in [11] by at least the amount $O(n/\epsilon)$, where $\epsilon$ is the target solution accuracy and $n$ is the number of problem blocks. In addition, for unconstrained smooth convex minimization, we develop a new technique called {\it randomized estimate sequence} to analyze the accelerated RBCD method proposed by Nesterov [11] and establish a sharper expected-value type of convergence rate than the one given in [11].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here