On sparse connectivity, adversarial robustness, and a novel model of the artificial neuron

16 Jun 2020  ·  Sergey Bochkanov ·

Deep neural networks have achieved human-level accuracy on almost all perceptual benchmarks. It is interesting that these advances were made using two ideas that are decades old: (a) an artificial neuron based on a linear summator and (b) SGD training. However, there are important metrics beyond accuracy: computational efficiency and stability against adversarial perturbations. In this paper, we propose two closely connected methods to improve these metrics on contour recognition tasks: (a) a novel model of an artificial neuron, a "strong neuron," with low hardware requirements and inherent robustness against adversarial perturbations and (b) a novel constructive training algorithm that generates sparse networks with $O(1)$ connections per neuron. We demonstrate the feasibility of our approach through experiments on SVHN and GTSRB benchmarks. We achieved an impressive 10x-100x reduction in operations count (10x when compared with other sparsification approaches, 100x when compared with dense networks) and a substantial reduction in hardware requirements (8-bit fixed-point math was used) with no reduction in model accuracy. Superior stability against adversarial perturbations (exceeding that of adversarial training) was achieved without any counteradversarial measures, relying on the robustness of strong neurons alone. We also proved that constituent blocks of our strong neuron are the only activation functions with perfect stability against adversarial attacks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods