On Nondeterminism and Instability in Neural Network Optimization

1 Jan 2021  ·  Cecilia Summers, Michael J. Dinneen ·

Optimization nondeterminism causes uncertainty when improving neural networks, with small changes in performance difficult to discern from run-to-run variability. While uncertainty can be reduced by training multiple copies of a model with different random seeds, doing so is time-consuming, costly, and makes reproducibility challenging. Despite this, little attention has been paid towards establishing an understanding of this problem. In this work, we establish an experimental protocol for understanding the effect of optimization nondeterminism on model diversity, which allows us to study the independent effects of a variety of sources of nondeterminism. Surprisingly, we find that each source of nondeterminism all have similar effects on multiple measures of model diversity. To explain this intriguing fact, we examine and identify the instability of model training, when taken as an end-to-end procedure, as the key determinant. We show that even one-bit changes in initial model parameters result in models that converge to vastly different values. Last, we demonstrate that recent methods in accelerated model ensembling hold promise for reducing the effects of instability on run-to-run variability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here