On Non-Linear operators for Geometric Deep Learning

6 Jul 2022  ·  Grégoire Sergeant-Perthuis, Jakob Maier, Joan Bruna, Edouard Oyallon ·

This work studies operators mapping vector and scalar fields defined over a manifold $\mathcal{M}$, and which commute with its group of diffeomorphisms $\text{Diff}(\mathcal{M})$. We prove that in the case of scalar fields $L^p_\omega(\mathcal{M,\mathbb{R}})$, those operators correspond to point-wise non-linearities, recovering and extending known results on $\mathbb{R}^d$. In the context of Neural Networks defined over $\mathcal{M}$, it indicates that point-wise non-linear operators are the only universal family that commutes with any group of symmetries, and justifies their systematic use in combination with dedicated linear operators commuting with specific symmetries. In the case of vector fields $L^p_\omega(\mathcal{M},T\mathcal{M})$, we show that those operators are solely the scalar multiplication. It indicates that $\text{Diff}(\mathcal{M})$ is too rich and that there is no universal class of non-linear operators to motivate the design of Neural Networks over the symmetries of $\mathcal{M}$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here