On Flat Minima, Large Margins and Generalizability

1 Jan 2021  ·  Daniel Lengyel, Nicholas Jennings, Panos Parpas, Nicholas Kantas ·

The intuitive connection to robustness and convincing empirical evidence have made the flatness of the loss surface an attractive measure of generalizability for neural networks. Yet it suffers from various problems such as computational difficulties, reparametrization issues, and a growing concern that it may only be an epiphenomenon of optimization methods. We provide empirical evidence that under the cross-entropy loss once a neural network reaches a non-trivial training error, the flatness correlates (via Pearson Correlation Coefficient) well to the classification margins, which allows us to better reason about the concerns surrounding flatness. Our results lead to the practical recommendation that when assessing generalizability one should consider a margin-based measure instead, as it is computationally more efficient, provides further insight, and is highly correlated to flatness. We also use our insight to replace the misleading folklore that small-batch methods generalize better because they are able to escape sharp minima. Instead, we argue that large-batch methods did not have enough time to maximize margins and hence generalize worse.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here