On estimating gaze by self-attention augmented convolutions

25 Aug 2020 Gabriel Lefundes Luciano Oliveira

Estimation of 3D gaze is highly relevant to multiple fields, including but not limited to interactive systems, specialized human-computer interfaces, and behavioral research. Although recently deep learning methods have boosted the accuracy of appearance-based gaze estimation, there is still room for improvement in the network architectures for this particular task... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper