On Dropout, Overfitting, and Interaction Effects in Deep Neural Networks

2 Jul 2020Benjamin LengerichEric P. XingRich Caruana

We examine Dropout through the perspective of interactions: learned effects that combine multiple input variables. Given $N$ variables, there are $O(N^2)$ possible pairwise interactions, $O(N^3)$ possible 3-way interactions, etc... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper