On-Demand Transit User Preference Analysis using Hybrid Choice Models

16 Feb 2021  ·  Nael Alsaleh, Bilal Farooq, Yixue Zhang, Steven Farber ·

In light of the increasing interest to transform the fixed-route public transit (FRT) services into on-demand transit (ODT) services, there exists a strong need for a comprehensive evaluation of the effects of this shift on the users. Such an analysis can help the municipalities and service providers to design and operate more convenient, attractive, and sustainable transit solutions. To understand the user preferences, we developed three hybrid choice models: integrated choice and latent variable (ICLV), latent class (LC), and latent class integrated choice and latent variable (LC-ICLV) models. We used these models to analyze the public transit user's preferences in Belleville, Ontario, Canada. Hybrid choice models were estimated using a rich dataset that combined the actual level of service attributes obtained from Belleville's ODT service and self-reported usage behaviour obtained from a revealed preference survey of the ODT users. The latent class models divided the users into two groups with different travel behaviour and preferences. The results showed that the captive user's preference for ODT service was significantly affected by the number of unassigned trips, in-vehicle time, and main travel mode before the ODT service started. On the other hand, the non-captive user's service preference was significantly affected by the Time Sensitivity and the Online Service Satisfaction latent variables, as well as the performance of the ODT service and trip purpose. This study attaches importance to improving the reliability and performance of the ODT service and outlines directions for reducing operational costs by updating the required fleet size and assigning more vehicles for work-related trips.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here