On Catastrophic Inheritance of Large Foundation Models

2 Feb 2024  ·  Hao Chen, Bhiksha Raj, Xing Xie, Jindong Wang ·

Large foundation models (LFMs) are claiming incredible performances. Yet great concerns have been raised about their mythic and uninterpreted potentials not only in machine learning, but also in various other disciplines. In this position paper, we propose to identify a neglected issue deeply rooted in LFMs: Catastrophic Inheritance, describing the weaknesses and limitations inherited from biased large-scale pre-training data to behaviors of LFMs on the downstream tasks, including samples that are corrupted, long-tailed, noisy, out-of-distributed, to name a few. Such inheritance can potentially cause catastrophes to downstream applications, such as bias, lack of generalization, deteriorated performance, security vulnerability, privacy leakage, and value misalignment. We discuss the challenges behind this issue and propose UIM, a framework to Understand the catastrophic inheritance of LFMs from both pre-training and downstream adaptation, Interpret the implications of catastrophic inheritance on downstream tasks, and how to Mitigate it. UIM aims to unite both the machine learning and social sciences communities for more responsible and promising AI development and deployment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here