On Anderson acceleration for partially observable Markov decision processes

29 Mar 2021  ·  Melike Ermis, MinGyu Park, Insoon Yang ·

This paper proposes an accelerated method for approximately solving partially observable Markov decision process (POMDP) problems offline. Our method carefully combines two existing tools: Anderson acceleration (AA) and the fast informed bound (FIB) method. Adopting AA, our method rapidly solves an approximate Bellman equation with an efficient combination of previous solution estimates. Furthermore, the use of FIB alleviates the scalability issue inherent in POMDPs. We show the convergence of the overall algorithm to the suboptimal solution obtained by FIB. We further consider a simulation-based method and prove that the approximation error is bounded explicitly. The performance of our algorithm is evaluated on several benchmark problems. The results of our experiments demonstrate that the proposed algorithm converges significantly faster without degrading the quality of the solution compared to its standard counterpart.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here