O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions

2 Apr 2013  ·  Lijun Zhang, Tianbao Yang, Rong Jin, Xiaofei He ·

Traditional algorithms for stochastic optimization require projecting the solution at each iteration into a given domain to ensure its feasibility. When facing complex domains, such as positive semi-definite cones, the projection operation can be expensive, leading to a high computational cost per iteration. In this paper, we present a novel algorithm that aims to reduce the number of projections for stochastic optimization. The proposed algorithm combines the strength of several recent developments in stochastic optimization, including mini-batch, extra-gradient, and epoch gradient descent, in order to effectively explore the smoothness and strong convexity. We show, both in expectation and with a high probability, that when the objective function is both smooth and strongly convex, the proposed algorithm achieves the optimal $O(1/T)$ rate of convergence with only $O(\log T)$ projections. Our empirical study verifies the theoretical result.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here