Occupant-Oriented Demand Response with Multi-Zone Thermal Building Control

9 Jan 2023  ·  Moritz Frahm, Thomas Dengiz, Philipp Zwickel, Heiko Maaß, Jörg Matthes, Veit Hagenmeyer ·

In future energy systems with high shares of renewable energy sources, the electricity demand of buildings has to react to the fluctuating electricity generation in view of stability. As buildings consume one-third of global energy and almost half of this energy accounts for Heating, Ventilation, and Air Conditioning (HVAC) systems, HVAC are suitable for shifting their electricity consumption in time. To this end, intelligent control strategies are necessary as the conventional control of HVAC is not optimized for the actual demand of occupants and the current situation in the electricity grid. In this paper, we present the novel multi-zone controller Price Storage Control (PSC) that not only considers room-individual Occupants' Thermal Satisfaction (OTS), but also the available energy storage, and energy prices. The main feature of PSC is that it does not need a building model or forecasts of future demands to derive the control actions for multiple rooms in a building. For comparison, we use an ideal, error-free Model Predictive Control (MPC), a simplified variant without storage consideration (PC), and a conventional hysteresis-based two-point control. We evaluate the four controllers in a multi-zone environment for heating a building in winter and consider two different scenarios that differ in how much the permitted temperatures vary. In addition, we compare the impact of model parameters with high and low thermal capacitance. The results show that PSC strongly outperforms the conventional control approach in both scenarios and for both parameters. For high capacitance, it leads to 22 % costs reduction while the ideal MPC achieves cost reductions of more than 39 %. Considering that PSC does not need any building model or forecast, as opposed to MPC, the results support the suitability of our developed control strategy for controlling HVAC systems in future energy systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here