Object Segmentation-Assisted Inter Prediction for Versatile Video Coding

18 Mar 2024  ·  Zhuoyuan Li, Zikun Yuan, Li Li, Dong Liu, Xiaohu Tang, Feng Wu ·

In modern video coding standards, block-based inter prediction is widely adopted, which brings high compression efficiency. However, in natural videos, there are usually multiple moving objects of arbitrary shapes, resulting in complex motion fields that are difficult to compactly represent. This problem has been tackled by more flexible block partitioning methods in the Versatile Video Coding (VVC) standard, but the more flexible partitions require more overhead bits to signal and still cannot be made arbitrary shaped. To address this limitation, we propose an object segmentation-assisted inter prediction method (SAIP), where objects in the reference frames are segmented by some advanced technologies. With a proper indication, the object segmentation mask is translated from the reference frame to the current frame as the arbitrary-shaped partition of different regions without any extra signal. Using the segmentation mask, motion compensation is separately performed for different regions, achieving higher prediction accuracy. The segmentation mask is further used to code the motion vectors of different regions more efficiently. Moreover, segmentation mask is considered in the joint rate-distortion optimization for motion estimation and partition estimation to derive the motion vector of different regions and partition more accurately. The proposed method is implemented into the VVC reference software, VTM version 12.0. Experimental results show that the proposed method achieves up to 1.98%, 1.14%, 0.79%, and on average 0.82%, 0.49%, 0.37% BD-rate reduction for common test sequences, under the Low-delay P, Low-delay B, and Random Access configurations, respectively.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here