Nystrom Method for Accurate and Scalable Implicit Differentiation

20 Feb 2023  ·  Ryuichiro Hataya, Makoto Yamada ·

The essential difficulty of gradient-based bilevel optimization using implicit differentiation is to estimate the inverse Hessian vector product with respect to neural network parameters. This paper proposes to tackle this problem by the Nystrom method and the Woodbury matrix identity, exploiting the low-rankness of the Hessian. Compared to existing methods using iterative approximation, such as conjugate gradient and the Neumann series approximation, the proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations. As a result, the proposed method works stably in various tasks and is faster than iterative approximations. Throughout experiments including large-scale hyperparameter optimization and meta learning, we demonstrate that the Nystrom method consistently achieves comparable or even superior performance to other approaches. The source code is available from https://github.com/moskomule/hypergrad.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here