Nonparametric Matrix Estimation with One-Sided Covariates

26 Oct 2021  ·  Christina Lee Yu ·

Consider the task of matrix estimation in which a dataset $X \in \mathbb{R}^{n\times m}$ is observed with sparsity $p$, and we would like to estimate $\mathbb{E}[X]$, where $\mathbb{E}[X_{ui}] = f(\alpha_u, \beta_i)$ for some Holder smooth function $f$. We consider the setting where the row covariates $\alpha$ are unobserved yet the column covariates $\beta$ are observed. We provide an algorithm and accompanying analysis which shows that our algorithm improves upon naively estimating each row separately when the number of rows is not too small. Furthermore when the matrix is moderately proportioned, our algorithm achieves the minimax optimal nonparametric rate of an oracle algorithm that knows the row covariates. In simulated experiments we show our algorithm outperforms other baselines in low data regimes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here