Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization

4 Oct 2019  ·  Ying Zhang, Ömer Deniz Akyildiz, Theodoros Damoulas, Sotirios Sabanis ·

In this paper, we are concerned with a non-asymptotic analysis of sampling algorithms used in nonconvex optimization. In particular, we obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2 distances for a popular class of algorithms called Stochastic Gradient Langevin Dynamics (SGLD). In addition, the aforementioned Wasserstein-2 convergence result can be applied to establish a non-asymptotic error bound for the expected excess risk. Crucially, these results are obtained under a local Lipschitz condition and a local dissipativity condition where we remove the uniform dependence in the data stream. We illustrate the importance of this relaxation by presenting examples from variational inference and from index tracking optimization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods