Non-Parametric Graph Learning for Bayesian Graph Neural Networks

Graphs are ubiquitous in modelling relational structures. Recent endeavours in machine learning for graph-structured data have led to many architectures and learning algorithms. However, the graph used by these algorithms is often constructed based on inaccurate modelling assumptions and/or noisy data. As a result, it fails to represent the true relationships between nodes. A Bayesian framework which targets posterior inference of the graph by considering it as a random quantity can be beneficial. In this paper, we propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices. The proposed model is flexible in the sense that it can effectively take into account the output of graph-based learning algorithms that target specific tasks. In addition, model inference scales well to large graphs. We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here