Non-negative isomorphic neural networks for photonic neuromorphic accelerators

2 Oct 2023  ·  Manos Kirtas, Nikolaos Passalis, Nikolaos Pleros, Anastasios Tefas ·

Neuromorphic photonic accelerators are becoming increasingly popular, since they can significantly improve computation speed and energy efficiency, leading to femtojoule per MAC efficiency. However, deploying existing DL models on such platforms is not trivial, since a great range of photonic neural network architectures relies on incoherent setups and power addition operational schemes that cannot natively represent negative quantities. This results in additional hardware complexity that increases cost and reduces energy efficiency. To overcome this, we can train non-negative neural networks and potentially exploit the full range of incoherent neuromorphic photonic capabilities. However, existing approaches cannot achieve the same level of accuracy as their regular counterparts, due to training difficulties, as also recent evidence suggests. To this end, we introduce a methodology to obtain the non-negative isomorphic equivalents of regular neural networks that meet requirements of neuromorphic hardware, overcoming the aforementioned limitations. Furthermore, we also introduce a sign-preserving optimization approach that enables training of such isomorphic networks in a non-negative manner.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods