Non-Local Neural Networks With Grouped Bilinear Attentional Transforms

Modeling spatial or temporal long-range dependency plays a key role in deep neural networks. Conventional dominant solutions include recurrent operations on sequential data or deeply stacking convolutional layers with small kernel size. Recently, a number of non-local operators (such as self-attention based) have been devised. They are typically generic and can be plugged into many existing network pipelines for globally computing among any two neurons in a feature map. This work proposes a novel non-local operator. It is inspired by the attention mechanism of human visual system, which can quickly attend to important local parts in sight and suppress other less-relevant information. The core of our method is learnable and data-adaptive bilinear attentional transform (BA-Transform), whose merits are three-folds: first, BA-Transform is versatile to model a wide spectrum of local or global attentional operations, such as emphasizing specific local regions. Each BA-Transform is learned in a data-adaptive way; Secondly, to address the discrepancy among features, we further design grouped BA-Transforms, which essentially apply different attentional operations to different groups of feature channels; Thirdly, many existing non-local operators are computation-intensive. The proposed BA-Transform is implemented by simple matrix multiplication and admits better efficacy. For empirical evaluation, we perform comprehensive experiments on two large-scale benchmarks, ImageNet and Kinetics, for image / video classification respectively. The achieved accuracies and various ablation experiments consistently demonstrate significant improvement by large margins.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here