Non-asymptotic approximations of neural networks by Gaussian processes

17 Feb 2021  ·  Ronen Eldan, Dan Mikulincer, Tselil Schramm ·

We study the extent to which wide neural networks may be approximated by Gaussian processes when initialized with random weights. It is a well-established fact that as the width of a network goes to infinity, its law converges to that of a Gaussian process. We make this quantitative by establishing explicit convergence rates for the central limit theorem in an infinite-dimensional functional space, metrized with a natural transportation distance. We identify two regimes of interest; when the activation function is polynomial, its degree determines the rate of convergence, while for non-polynomial activations, the rate is governed by the smoothness of the function.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here