Non-asymptotic and Accurate Learning of Nonlinear Dynamical Systems

20 Feb 2020  ·  Yahya Sattar, Samet Oymak ·

We consider the problem of learning stabilizable systems governed by nonlinear state equation $h_{t+1}=\phi(h_t,u_t;\theta)+w_t$. Here $\theta$ is the unknown system dynamics, $h_t $ is the state, $u_t$ is the input and $w_t$ is the additive noise vector. We study gradient based algorithms to learn the system dynamics $\theta$ from samples obtained from a single finite trajectory. If the system is run by a stabilizing input policy, we show that temporally-dependent samples can be approximated by i.i.d. samples via a truncation argument by using mixing-time arguments. We then develop new guarantees for the uniform convergence of the gradients of empirical loss. Unlike existing work, our bounds are noise sensitive which allows for learning ground-truth dynamics with high accuracy and small sample complexity. Together, our results facilitate efficient learning of the general nonlinear system under stabilizing policy. We specialize our guarantees to entry-wise nonlinear activations and verify our theory in various numerical experiments

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here