Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data

14 May 2021  ·  Hongda Wu, Ping Wang ·

Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data sharing. The non-independent-and-identically-distributed (non-i.i.d.) data samples invoke discrepancies between the global and local objectives, making the FL model slow to converge. In this paper, we proposed Optimal Aggregation algorithm for better aggregation, which finds out the optimal subset of local updates of participating nodes in each global round, by identifying and excluding the adverse local updates via checking the relationship between the local gradient and the global gradient. Then, we proposed a Probabilistic Node Selection framework (FedPNS) to dynamically change the probability for each node to be selected based on the output of Optimal Aggregation. FedPNS can preferentially select nodes that propel faster model convergence. The unbiasedness of the proposed FedPNS design is illustrated and the convergence rate improvement of FedPNS over the commonly adopted Federated Averaging (FedAvg) algorithm is analyzed theoretically. Experimental results demonstrate the effectiveness of FedPNS in accelerating the FL convergence rate, as compared to FedAvg with random node selection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here