Paper

NNgTL: Neural Network Guided Optimal Temporal Logic Task Planning for Mobile Robots

In this work, we investigate task planning for mobile robots under linear temporal logic (LTL) specifications. This problem is particularly challenging when robots navigate in continuous workspaces due to the high computational complexity involved. Sampling-based methods have emerged as a promising avenue for addressing this challenge by incrementally constructing random trees, thereby sidestepping the need to explicitly explore the entire state-space. However, the performance of this sampling-based approach hinges crucially on the chosen sampling strategy, and a well-informed heuristic can notably enhance sample efficiency. In this work, we propose a novel neural-network guided (NN-guided) sampling strategy tailored for LTL planning. Specifically, we employ a multi-modal neural network capable of extracting features concurrently from both the workspace and the B\"{u}chi automaton. This neural network generates predictions that serve as guidance for random tree construction, directing the sampling process toward more optimal directions. Through numerical experiments, we compare our approach with existing methods and demonstrate its superior efficiency, requiring less than 15% of the time of the existing methods to find a feasible solution.

Results in Papers With Code
(↓ scroll down to see all results)