Neuro-Visualizer: An Auto-encoder-based Loss Landscape Visualization Method

26 Sep 2023  ·  Mohannad Elhamod, Anuj Karpatne ·

In recent years, there has been a growing interest in visualizing the loss landscape of neural networks. Linear landscape visualization methods, such as principal component analysis, have become widely used as they intuitively help researchers study neural networks and their training process. However, these linear methods suffer from limitations and drawbacks due to their lack of flexibility and low fidelity at representing the high dimensional landscape. In this paper, we present a novel auto-encoder-based non-linear landscape visualization method called Neuro-Visualizer that addresses these shortcoming and provides useful insights about neural network loss landscapes. To demonstrate its potential, we run experiments on a variety of problems in two separate applications of knowledge-guided machine learning (KGML). Our findings show that Neuro-Visualizer outperforms other linear and non-linear baselines and helps corroborate, and sometime challenge, claims proposed by machine learning community. All code and data used in the experiments of this paper are available at an anonymous link https://anonymous.4open.science/r/NeuroVisualizer-FDD6

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here