Neural-Symbolic Descriptive Action Model from Images: The Search for STRIPS

11 Dec 2019  ·  Masataro Asai ·

Recent work on Neural-Symbolic systems that learn the discrete planning model from images has opened a promising direction for expanding the scope of Automated Planning and Scheduling to the raw, noisy data. However, previous work only partially addressed this problem, utilizing the black-box neural model as the successor generator. In this work, we propose Double-Stage Action Model Acquisition (DSAMA), a system that obtains a descriptive PDDL action model with explicit preconditions and effects over the propositional variables unsupervized-learned from images. DSAMA trains a set of Random Forest rule-based classifiers and compiles them into logical formulae in PDDL. While we obtained a competitively accurate PDDL model compared to a black-box model, we observed that the resulting PDDL is too large and complex for the state-of-the-art standard planners such as Fast Downward primarily due to the PDDL-SAS+ translator bottleneck. From this negative result, we argue that this translator bottleneck cannot be addressed just by using a different, existing rule-based learning method, and we point to the potential future directions.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here