Neural Speaker Diarization with Speaker-Wise Chain Rule

2 Jun 2020  ·  Yusuke Fujita, Shinji Watanabe, Shota Horiguchi, Yawen Xue, Jing Shi, Kenji Nagamatsu ·

Speaker diarization is an essential step for processing multi-speaker audio. Although an end-to-end neural diarization (EEND) method achieved state-of-the-art performance, it is limited to a fixed number of speakers. In this paper, we solve this fixed number of speaker issue by a novel speaker-wise conditional inference method based on the probabilistic chain rule. In the proposed method, each speaker's speech activity is regarded as a single random variable, and is estimated sequentially conditioned on previously estimated other speakers' speech activities. Similar to other sequence-to-sequence models, the proposed method produces a variable number of speakers with a stop sequence condition. We evaluated the proposed method on multi-speaker audio recordings of a variable number of speakers. Experimental results show that the proposed method can correctly produce diarization results with a variable number of speakers and outperforms the state-of-the-art end-to-end speaker diarization methods in terms of diarization error rate.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here