Neural spatio-temporal reasoning with object-centric self-supervised learning

1 Jan 2021  ·  David Ding, Felix Hill, Adam Santoro, Matthew Botvinick ·

Transformer-based language models have proved capable of rudimentary symbolic reasoning, underlining the effectiveness of applying self-attention computations to sets of discrete entities. In this work, we apply this lesson to videos of physical interaction between objects. We show that self-attention-based models operating on discrete, learned, object-centric representations perform well on spatio-temporal reasoning tasks which were expressly designed to trouble traditional neural network models and to require higher-level cognitive processes such as causal reasoning and understanding of intuitive physics and narrative structure. We achieve state of the art results on two datasets, CLEVRER and CATER, significantly outperforming leading hybrid neuro-symbolic models. Moreover, we find that techniques from language modelling, such as BERT-style semi-supervised predictive losses, allow our model to surpass neuro-symbolic approaches while using 40% less labelled data. Our results corroborate the idea that neural networks can reason about the causal, dynamic structure of visual data and attain understanding of intuitive physics, which counters the popular claim that they are only effective at perceptual pattern-recognition and not reasoning per se.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here