Neural Program Synthesis with a Differentiable Fixer

19 Jun 2020  ·  Matej Balog, Rishabh Singh, Petros Maniatis, Charles Sutton ·

We present a new program synthesis approach that combines an encoder-decoder based synthesis architecture with a differentiable program fixer. Our approach is inspired from the fact that human developers seldom get their program correct on the first attempt, and perform iterative testing-based program fixing to get to the desired program functionality. Similarly, our approach first learns a distribution over programs conditioned on an encoding of a set of input-output examples, and then iteratively performs fix operations using the differentiable fixer. The fixer takes as input the original examples and the current program's outputs on example inputs, and generates a new distribution over the programs with the goal of reducing the discrepancies between the current program outputs and the desired example outputs. We train our architecture end-to-end on the RobustFill domain, and show that the addition of the fixer module leads to a significant improvement on synthesis accuracy compared to using beam search.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here