Neural Probabilistic Model for Non-projective MST Parsing

IJCNLP 2017  ·  Xuezhe Ma, Eduard Hovy ·

In this paper, we propose a probabilistic parsing model, which defines a proper conditional probability distribution over non-projective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs which benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM and CNN. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over non-projective trees. We evaluate our model on 17 different datasets, across 14 different languages. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straight-forward end-to-end model training procedure via back-propagation. Our parser achieves state-of-the-art parsing performance on nine datasets.

PDF Abstract IJCNLP 2017 PDF IJCNLP 2017 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods