Neural Networks, Hypersurfaces, and Radon Transforms

4 Jul 2019  ·  Soheil Kolouri, Xuwang Yin, Gustavo K. Rohde ·

Connections between integration along hypersufaces, Radon transforms, and neural networks are exploited to highlight an integral geometric mathematical interpretation of neural networks. By analyzing the properties of neural networks as operators on probability distributions for observed data, we show that the distribution of outputs for any node in a neural network can be interpreted as a nonlinear projection along hypersurfaces defined by level surfaces over the input data space. We utilize these descriptions to provide new interpretation for phenomena such as nonlinearity, pooling, activation functions, and adversarial examples in neural network-based learning problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here