Neural Decision Forests for Semantic Image Labelling

CVPR 2014  ·  Samuel Rota Bulo, Peter Kontschieder ·

In this work we present Neural Decision Forests, a novel approach to jointly tackle data representation- and discriminative learning within randomized decision trees. Recent advances of deep learning architectures demonstrate the power of embedding representation learning within the classifier – An idea that is intuitively supported by the hierarchical nature of the decision forest model where the input space is typically left unchanged during training and testing. We bridge this gap by introducing randomized Multi- Layer Perceptrons (rMLP) as new split nodes which are capable of learning non-linear, data-specific representations and taking advantage of them by finding optimal predictions for the emerging child nodes. To prevent overfitting, we i) randomly select the image data fed to the input layer, ii) automatically adapt the rMLP topology to meet the complexity of the data arriving at the node and iii) introduce an l1-norm based regularization that additionally sparsifies the network. The key findings in our experiments on three different semantic image labelling datasets are consistently improved results and significantly compressed trees compared to conventional classification trees.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here