Neural Contextual Bandits with UCB-based Exploration

ICML 2020  ·  Dongruo Zhou, Lihong Li, Quanquan Gu ·

We study the stochastic contextual bandit problem, where the reward is generated from an unknown function with additive noise. No assumption is made about the reward function other than boundedness. We propose a new algorithm, NeuralUCB, which leverages the representation power of deep neural networks and uses a neural network-based random feature mapping to construct an upper confidence bound (UCB) of reward for efficient exploration. We prove that, under standard assumptions, NeuralUCB achieves $\tilde O(\sqrt{T})$ regret, where $T$ is the number of rounds. To the best of our knowledge, it is the first neural network-based contextual bandit algorithm with a near-optimal regret guarantee. We also show the algorithm is empirically competitive against representative baselines in a number of benchmarks.

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here