Neural Collective Entity Linking Based on Recurrent Random Walk Network Learning

20 Jun 2019 Mengge Xue Weiming Cai Jinsong Su Linfeng Song Yubin Ge Yubao Liu Bin Wang

Benefiting from the excellent ability of neural networks on learning semantic representations, existing studies for entity linking (EL) have resorted to neural networks to exploit both the local mention-to-entity compatibility and the global interdependence between different EL decisions for target entity disambiguation. However, most neural collective EL methods depend entirely upon neural networks to automatically model the semantic dependencies between different EL decisions, which lack of the guidance from external knowledge... (read more)

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet