Neither Global Nor Local: A Hierarchical Robust Subspace Clustering For Image Data

17 May 2019  ·  Maryam Abdolali, Mohammad Rahmati ·

In this paper, we consider the problem of subspace clustering in presence of contiguous noise, occlusion and disguise. We argue that self-expressive representation of data in current state-of-the-art approaches is severely sensitive to occlusions and complex real-world noises. To alleviate this problem, we propose a hierarchical framework that brings robustness of local patches-based representations and discriminant property of global representations together. This approach consists of 1) a top-down stage, in which the input data is subject to repeated division to smaller patches and 2) a bottom-up stage, in which the low rank embedding of local patches in field of view of a corresponding patch in upper level are merged on a Grassmann manifold. This summarized information provides two key information for the corresponding patch on the upper level: cannot-links and recommended-links. This information is employed for computing a self-expressive representation of each patch at upper levels using a weighted sparse group lasso optimization problem. Numerical results on several real data sets confirm the efficiency of our approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here