Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals

13 Feb 2023  ·  Ilias Diakonikolas, Daniel M. Kane, Lisheng Ren ·

We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples $(\mathbf{x},y)$ from an unknown distribution on $\mathbb{R}^n \times \{ \pm 1\}$, whose marginal distribution on $\mathbf{x}$ is the standard Gaussian and the labels $y$ can be arbitrary, the goal is to output a hypothesis with 0-1 loss $\mathrm{OPT}+\epsilon$, where $\mathrm{OPT}$ is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here