Mutual-Information Regularization in Markov Decision Processes and Actor-Critic Learning

11 Sep 2019 Felix Leibfried Jordi Grau-Moya

Cumulative entropy regularization introduces a regulatory signal to the reinforcement learning (RL) problem that encourages policies with high-entropy actions, which is equivalent to enforcing small deviations from a uniform reference marginal policy. This has been shown to improve exploration and robustness, and it tackles the value overestimation problem... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Entropy Regularization
Regularization
Q-Learning
Off-Policy TD Control