Mutual Calibration between Explicit and Implicit Deep Generative Models

1 Jan 2021  ·  Qitian Wu, Rui Gao, Hongyuan Zha ·

Deep generative models are generally categorized into explicit models and implicit models. The former defines an explicit density form that allows likelihood inference; while the latter targets a flexible transformation from random noise to generated samples. To take full advantages of both models, we propose Stein Bridging, a novel joint training framework that connects an explicit (unnormalized) density estimator and an implicit sample generator via Stein discrepancy. We show that the Stein bridge 1) induces novel mutual regularization via kernel Sobolev norm penalization and Moreau-Yosida regularization, and 2) stabilizes the training dynamics. Empirically, we demonstrate that Stein Bridging can facilitate the density estimator to accurately identify data modes and guide the sample generator to output more high-quality samples especially when the training samples are contaminated or limited.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here