Multiplication-Avoiding Variant of Power Iteration with Applications

22 Oct 2021  ·  Hongyi Pan, Diaa Badawi, Runxuan Miao, Erdem Koyuncu, Ahmet Enis Cetin ·

Power iteration is a fundamental algorithm in data analysis. It extracts the eigenvector corresponding to the largest eigenvalue of a given matrix. Applications include ranking algorithms, recommendation systems, principal component analysis (PCA), among many others. In this paper, we introduce multiplication-avoiding power iteration (MAPI), which replaces the standard $\ell_2$-inner products that appear at the regular power iteration (RPI) with multiplication-free vector products which are Mercer-type kernel operations related with the $\ell_1$ norm. Precisely, for an $n\times n$ matrix, MAPI requires $n$ multiplications, while RPI needs $n^2$ multiplications per iteration. Therefore, MAPI provides a significant reduction of the number of multiplication operations, which are known to be costly in terms of energy consumption. We provide applications of MAPI to PCA-based image reconstruction as well as to graph-based ranking algorithms. When compared to RPI, MAPI not only typically converges much faster, but also provides superior performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here