Multiple Satellites Collaboration for Joint Code-aided CFOs and CPOs Estimation

22 Sep 2023  ·  Pingyue Yue, Yixuan Li, Yue Li, Rui Zhang, Shuai Wang, Jianping An ·

Low Earth Orbit (LEO) satellites are being extensively researched in the development of secure Internet of Remote Things (IoRT). In scenarios with miniaturized terminals, the limited transmission power and long transmission distance often lead to low Signal-to-Noise Ratio (SNR) at the satellite receiver, which degrades communication performance. A solution to address this issue is the utilization of cooperative satellites, which can combine signals received from multiple satellites, thereby significantly improve SNR. However, in order to maximize the combination gain, the signal coherent combining is necessary, which requires the carrier frequency and phase of each receiving signal to be aligned. Under low SNR circumstances, carrier parameter estimation can be a significant challenge, especially for short burst transmission with no training sequence. In order to tackle it, we propose an iterative code-aided estimation algorithm for joint Carrier Frequency Offset (CFO) and Carrier Phase Offset (CPO). The Cram\'er-Rao Lower Bound (CRLB) is suggested as the limit on the parameter estimation performance. Simulation results demonstrate that the proposed algorithm can approach Bit Error Rate (BER) performance bound within 0.4 dB with regards to four-satellite collaboration.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here