A Distributionally Robust Optimization Method for Adversarial Multiple Kernel Learning

27 Feb 2019  ·  Masoud Badiei Khuzani, Hongyi Ren, Md Tauhidul Islam, Lei Xing ·

We propose a novel data-driven method to learn a mixture of multiple kernels with random features that is certifiabaly robust against adverserial inputs. Specifically, we consider a distributionally robust optimization of the kernel-target alignment with respect to the distribution of training samples over a distributional ball defined by the Kullback-Leibler (KL) divergence. The distributionally robust optimization problem can be recast as a min-max optimization whose objective function includes a log-sum term. We develop a mini-batch biased stochastic primal-dual proximal method to solve the min-max optimization. To debias the minibatch algorithm, we use the Gumbel perturbation technique to estimate the log-sum term. We establish theoretical guarantees for the performance of the proposed multiple kernel learning method. In particular, we prove the consistency, asymptotic normality, stochastic equicontinuity, and the minimax rate of the empirical estimators. In addition, based on the notion of Rademacher and Gaussian complexities, we establish distributionally robust generalization bounds that are tighter than previous known bounds. More specifically, we leverage matrix concentration inequalities to establish distributionally robust generalization bounds. We validate our kernel learning approach for classification with the kernel SVMs on synthetic dataset generated by sampling multvariate Gaussian distributions with differernt variance structures. We also apply our kernel learning approach to the MNIST data-set and evaluate its robustness to perturbation of input images under different adversarial models. More specifically, we examine the robustness of the proposed kernel model selection technique against FGSM, PGM, C\&W, and DDN adversarial perturbations, and compare its performance with alternative state-of-the-art multiple kernel learning paradigms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods