Multiple-Instance Pruning For Learning Efficient Cascade Detectors

NeurIPS 2007  ·  Cha Zhang, Paul A. Viola ·

Cascade detectors have been shown to operate extremely rapidly, with high accuracy, and have important applications such as face detection. Driven by this success, cascade earning has been an area of active research in recent years. Nevertheless, there are still challenging technical problems during the training process of cascade detectors. In particular, determining the optimal target detection rate for each stage of the cascade remains an unsolved issue. In this paper, we propose the multiple instance pruning (MIP) algorithm for soft cascades. This algorithm computes a set of thresholds which aggressively terminate computation with no reduction in detection rate or increase in false positive rate on the training dataset. The algorithm is based on two key insights: i) examples that are destined to be rejected by the complete classifier can be safely pruned early; ii) face detection is a multiple instance learning problem. The MIP process is fully automatic and requires no assumptions of probability distributions, statistical independence, or ad hoc intermediate rejection targets. Experimental results on the MIT+CMU dataset demonstrate significant performance advantages.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here