Multi-modal Image Registration for Correlative Microscopy

12 Nov 2014  ·  Tian Cao, Christopher Zach, Shannon Modla, Debbie Powell, Kirk Czymmek, Marc Niethammer ·

Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies. Image registration for correlative microscopy is quite challenging because it is a multi-modal, multi-scale and multi-dimensional registration problem. In this report, I introduce two methods of image registration for correlative microscopy. The first method is based on fiducials (beads). I generate landmarks from the fiducials and compute the similarity transformation matrix based on three pairs of nearest corresponding landmarks. A least-squares matching process is applied afterwards to further refine the registration. The second method is inspired by the image analogies approach. I introduce the sparse representation model into image analogies. I first train representative image patches (dictionaries) for pre-registered datasets from two different modalities, and then I use the sparse coding technique to transfer a given image to a predicted image from one modality to another based on the learned dictionaries. The final image registration is between the predicted image and the original image corresponding to the given image in the different modality. The method transforms a multi-modal registration problem to a mono-modal one. I test my approaches on Transmission Electron Microscopy (TEM) and confocal microscopy images. Experimental results of the methods are also shown in this report.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here