Multi-Information Source Optimization

We consider Bayesian optimization of an expensive-to-evaluate black-box objective function, where we also have access to cheaper approximations of the objective. In general, such approximations arise in applications such as reinforcement learning, engineering, and the natural sciences, and are subject to an inherent, unknown bias. This model discrepancy is caused by an inadequate internal model that deviates from reality and can vary over the domain, making the utilization of these approximations a non-trivial task. We present a novel algorithm that provides a rigorous mathematical treatment of the uncertainties arising from model discrepancies and noisy observations. Its optimization decisions rely on a value of information analysis that extends the Knowledge Gradient factor to the setting of multiple information sources that vary in cost: each sampling decision maximizes the predicted benefit per unit cost. We conduct an experimental evaluation that demonstrates that the method consistently outperforms other state-of-the-art techniques: it finds designs of considerably higher objective value and additionally inflicts less cost in the exploration process.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here