Multi-Fidelity Gaussian Process based Empirical Potential Development for Si:H Nanowires

11 May 2020  ·  Moonseop Kim, Huayi Yin, Guang Lin ·

In material modeling, the calculation speed using the empirical potentials is fast compared to the first principle calculations, but the results are not as accurate as of the first principle calculations. First principle calculations are accurate but slow and very expensive to calculate. In this work, first, the H-H binding energy and H$_2$-H$_2$ interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential. Second, the H-H parameters are estimated. After fitting H-H parameters, the mechanical properties are obtained. Finally, to integrate both the low-fidelity empirical potential data and the data from the high-fidelity first-principle calculations, the multi-fidelity Gaussian process regression is employed to predict the H-H binding energy and the H$_2$-H$_2$ interaction energy. Numerical results demonstrate the accuracy of the developed empirical potentials.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods