Multi-Engine and Multi-Alignment Based Automatic Post-Editing and its Impact on Translation Productivity

In this paper we combine two strands of machine translation (MT) research: automatic post-editing (APE) and multi-engine (system combination) MT. APE systems learn a target-language-side second stage MT system from the data produced by human corrected output of a first stage MT system, to improve the output of the first stage MT in what is essentially a sequential MT system combination architecture. At the same time, there is a rich research literature on parallel MT system combination where the same input is fed to multiple engines and the best output is selected or smaller sections of the outputs are combined to obtain improved translation output. In the paper we show that parallel system combination in the APE stage of a sequential MT-APE combination yields substantial translation improvements both measured in terms of automatic evaluation metrics as well as in terms of productivity improvements measured in a post-editing experiment. We also show that system combination on the level of APE alignments yields further improvements. Overall our APE system yields statistically significant improvement of 5.9{\%} relative BLEU over a strong baseline (English{--}Italian Google MT) and 21.76{\%} productivity increase in a human post-editing experiment with professional translators.

PDF Abstract COLING 2016 PDF COLING 2016 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here