Multi-dimensional Fair Federated Learning

9 Dec 2023  ·  Cong Su, Guoxian Yu, Jun Wang, Hui Li, Qingzhong Li, Han Yu ·

Federated learning (FL) has emerged as a promising collaborative and secure paradigm for training a model from decentralized data without compromising privacy. Group fairness and client fairness are two dimensions of fairness that are important for FL. Standard FL can result in disproportionate disadvantages for certain clients, and it still faces the challenge of treating different groups equitably in a population. The problem of privately training fair FL models without compromising the generalization capability of disadvantaged clients remains open. In this paper, we propose a method, called mFairFL, to address this problem and achieve group fairness and client fairness simultaneously. mFairFL leverages differential multipliers to construct an optimization objective for empirical risk minimization with fairness constraints. Before aggregating locally trained models, it first detects conflicts among their gradients, and then iteratively curates the direction and magnitude of gradients to mitigate these conflicts. Theoretical analysis proves mFairFL facilitates the fairness in model development. The experimental evaluations based on three benchmark datasets show significant advantages of mFairFL compared to seven state-of-the-art baselines.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here