Multi-Constraint Safe RL with Objective Suppression for Safety-Critical Applications

Safe reinforcement learning tasks with multiple constraints are a challenging domain despite being very common in the real world. In safety-critical domains, properly handling the constraints becomes even more important. To address this challenge, we first describe the multi-constraint problem with a stronger Uniformly Constrained MDP (UCMDP) model; we then propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic, as a solution to the Lagrangian dual of a UCMDP. We benchmark Objective Suppression in two multi-constraint safety domains, including an autonomous driving domain where any incorrect behavior can lead to disastrous consequences. Empirically, we demonstrate that our proposed method, when combined with existing safe RL algorithms, can match the task reward achieved by our baselines with significantly fewer constraint violations.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here