Paper

Multi-Agent Robust Control Synthesis from Global Temporal Logic Tasks

This paper focuses on the heterogeneous multi-agent control problem under global temporal logic tasks. We define a specification language, called extended capacity temporal logic (ECaTL), to describe the required global tasks, including the number of times that a local or coupled signal temporal logic (STL) task needs to be satisfied and the synchronous requirements on task satisfaction. The robustness measure for ECaTL is formally designed. In particular, the robustness for synchronous tasks is evaluated from both the temporal and spatial perspectives. Mixed-integer linear constraints are designed to encode ECaTL specifications, and a two-step optimization framework is further proposed to realize task-satisfied motion planning with high spatial robustness and synchronicity. Simulations are conducted to demonstrate the expressivity of ECaTL and the efficiency of the proposed control synthesis approach.

Results in Papers With Code
(↓ scroll down to see all results)